
1

Water quality research for Lake Granbury, TX

Support from
2006/07 congressional  earmark

Championed by
Rep. Chet Edwards

Leading Institutions
Texas A&M University
University of Texas at Arlington
Baylor University

Collaborators
Texas Water Research Institute
Brazos River Authority
Texas Parks and Wildlife

Water quality research for Lake Granbury, TX

Researchers
Daniel Roelke
James Grover
Bryan Brooks
Steve Davis
George Gable
Anna-Marie Gable 
Jason Baker
Jacob Stanley
Fabiola Ureña-Boeck
Mieke Lahousse

Support from 
2006/07 congressional  earmark

Championed by
Rep. Chet Edwards

Prymnesium parvum blooms (golden  algae)
TAMU, UTA, BU

Prymnesium parvum blooms (golden  algae)
TAMU, UTA, BU

Fish are dying in
Lake Granbury - now

Pat and Dan Loomis

Prymnesium parvum:  life  as  a  mixotroph
TAMU, UTA, BU
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life  as  a  plant

bacteria
organic 
nutrients

(e.g., lipids,
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life  as  a  animal



2

Lake Granbury, TX:  Water quality questions
TAMU, UTA, BU

• What causes golden algae
blooms?

• Are golden algae and E. coli
problems linked?

• Might “leaky” septic systems
play a role?

• What can we do about it?

GranburyGranburyGranbury

Research  approach

1. In-lake monitoring
fixed-station  sampling
high-resolution  spatial  mapping

3. Predictive  modeling
laboratory studies
mathematical  equations
validation  and scenario testing

2. Direct measurements  of  toxicity
bioassays using  a  fish
bioassays  using  a  crustacean

TAMU, UTA, BU

1.  In-lake  monitoring:  Fixed-stations
TAMU, UTA, BU

Ten  locations 

#1  Head of reservoir

#2, 3
#4, 5
#6, 7
#8, 9

#10  Dam

1

2,3

4,5

6,7

8,9

10

Paired-stations
(shallow and deep)

1.  In-lake  monitoring:  Fixed-stations
TAMU, UTA, BU

Parameters sampled 

P. parvum
E. coli
Fecal coliform
Dissolved org.-carbon
Toxicity

Chlorophyll a
Phytoplankton composition
Zooplankton composition
Total bacteria

1

2,3

4,5

6,7

8,9

10

1.  In-lake  monitoring:  Fixed-stations
TAMU, UTA, BU

Parameters sampled 

Nutrients
• Nitrate/nitrite
• Ammonium
• Phosphate
• Total nitrogen
• Total phosphorus

Light
• Transmission
• Secchi depth

1

2,3

4,5

6,7

8,9

10

1. In-lake  monitoring:  Fixed-stations
TAMU, UTA, BU

Parameters sampled 

Temperature
Salinity
Dissolved oxygen
pH
Total suspended solids
Oxidation-Reduction Potential

1

2,3

4,5

6,7

8,9

10
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1.  In-lake  monitoring:  Fixed-stations
TAMU, UTA, BU

Chlorophyll a P. parvum E. coli Fecal coliform
50 µg per liter 10 million cells per liter 10 colonies per liter 12 colonies per liter

Sept. Oct. Nov. Dec. Sept. Oct. Nov. Dec. Sept. Oct. Nov. Dec. Sept. Oct. Nov. Dec.

2006

“Upper”  Lake Granbury - Representative  trends

*toxic

1.  In-lake  monitoring:  Fixed-stations
TAMU, UTA, BU

Chlorophyll a P. parvum E. coli Fecal coliform
50 µg per liter 10 million cells per liter 10 colonies per liter 12 colonies per liter

Sept. Oct. Nov. Dec. Sept. Oct. Nov. Dec. Sept. Oct. Nov. Dec. Sept. Oct. Nov. Dec.

2006

“Lower”  Lake Granbury - Representative  trends

1.  In-lake  monitoring:  Fixed-stations
TAMU, UTA, BU

Persistent
phytoplankton
biomass,  and
variable
golden algae

Growing
phytoplankton
biomass  and
golden algae

1. In-lake  monitoring:  Mapping
TAMU, UTA, BU

Dataflow 

On-board, flow
through  system  with
geo-referenced data
collection

1. In-lake  monitoring:  Mapping
TAMU, UTA, BU

Parameters sampled 

Chlorophyll a
Dissolved org. carbon
Salinity
Temperature
Transparency

1. Mapping
TAMU, UTA, BU

Well-mixed
conditions
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1. Mapping
TAMU, UTA, BU

Well-mixed
conditions

1. Mapping
TAMU, UTA, BU

Well-mixed
conditions

1. Mapping
TAMU, UTA, BU

Spatial
heterogeneity

1. Mapping
TAMU, UTA, BU

2.  Direct  measurements  of  toxicity
TAMU, UTA, BU

J La Claire, UT Austin
From Igarashi et al. 1999

Prymnesium parvum
Fish kills believed to result from exposure to 

prymnesium-1 (C107H154Cl3NO44) and/or 
prymnesium-2 (C96H136Cl3NO35)

2.  Direct  measurements  of  toxicity
TAMU, UTA, BU

Coal miners used canaries 
to signal if there was a 
problem in the mine shaft 

Similarly, we use sensitive
organisms to signal if toxic 
P. parvum blooms occur

Daphnia magna
- A “water flea”

Pimephales promelas
- A common minnow
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2.  Direct  measurements  of  toxicity
TAMU, UTA, BU

Even though a minnow…

is not a largemouth…

the minnow can be 
protective of other fish.

2.  Direct  measurements  of  toxicity
TAMU, UTA, BU

Prymnesium parvum Toxicity
Why Use Aquatic Biosensors?
1. Sensitivity - excellent “sentinels”

2. Ecological Relevance - representative of other
cladocerans and fish

3. Availability - species widely used for monitoring
water quality

4. Precision - reproducibility of responses within and
between labs

2.  Direct  measurements  of  toxicity
TAMU, UTA, BU

P. parvum toxicity to fish affected
by temperature and salinity

Most pronounced at lower salinity 
and temperatures similar to those 
experienced during winter blooms 
in Texas reservoirs (e.g., Granbury,
Possum Kingdom, Whitney)

Perhaps a recipe for fish kills?

2.  Direct  measurements  of  toxicity
TAMU, UTA, BU

Fish Biosensor Responses to the January 2007 Toxic Bloom

1

2,3

4,5

6,7

8,9

10

Not
Toxic

Site Number   Percent Mortality

1 27%
2 93%
3 87%
4 93%
5 73%
6 0
7 0
8 0
9 0
10 0

Toxic

Moderate
Toxicity

3.  Predictive  modeling - overview
TAMU, UTA, BU

Input 
Data

Equations &
Calculations

Output 
Data

Based on lake 
characteristics

Based on 
knowledge and 
guesswork 

Predicted P. parvum
density, dissolved nitrate 
and phosphate
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3.  Predictive  modeling – Knowledge & guesswork
TAMU, UTA, BU

Equations &
Calculations

Population Change = Growth (Reproduction) - Mortality
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3.  Predictive  modeling – Growth
TAMU, UTA, BU

Growth of P. parvum
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3.  Predictive  modeling – Mortality
TAMU, UTA, BU

Mortality of P. parvum

Zooplankton 
“Grazing”

Hydraulic
Flushing
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3.  Predictive  modeling – Physical settings
TAMU, UTA, BU

Inflow

Outflow

Mixing

Well – mixed conditions

Unrealistic, but easy

Inflow

Outflow

Long, narrow reservoir

Realistic, but challenging

3.  Predictive  modeling – More complications
TAMU, UTA, BU

Other algae live in the lake and compete with P. parvum, 
what is their effect?

Toxicity of P. parvum is not in the current version.

“Life as an animal” is not in the current version.

All processes in the model are highly simplified and 
could be more realistic.

3.  Predictive  modeling – Uses
TAMU, UTA, BU

Summarizes knowledge systematically, identifies gaps.

“What if” questions and management scenarios can be 
explored.

Forecasting and prediction…

Timeline and What’s next?

Monthly sampling, and increased  scope
• on-going  lake  sampling (as described)
• correlations  between  golden algae,  bacteria  and  DOM
• add  anthropogenic  tracers (e.g., nicotine, caffeine, etc.)
• expand  to regional  studies  (multiple lakes,  historical analysis)

TAMU, UTA, BU

Predictive  modeling
• develop  model of golden algae with competitors
• extend  model to long, narrow reservoir setting     
• compare  model to field data
• extend  realism of model (toxicity, life as an animal)


