Salinity in the Northern Segment of the Brazos River Alluvium Aquifer: A Hydro-Forensic Approach

ERIN NOONAN AND JOE C. YELDERMAN JR.

BAYLOR UNIVERSITY

Introduction

- Growth along I-35
 corridor has strained
 regions water resources
- Brazos River Alluvium aquifer (BRAA) is an underutilized minor aquifer
- Salinity varies throughout BRAA
- Effective aquifer
 management requires a
 better understanding of
 salinity sources and
 variability

Introduction

- Growth along I-35
 corridor has strained
 regions water resources
- Brazos River Alluvium aquifer (BRAA) is an underutilized minor aquifer
- Salinity varies throughout BRAA
- Effective aquifer
 management requires a
 better understanding of
 salinity sources and
 variability

Objective

 Characterize the variability of salinity in the northern segment of the BRAA and evaluate potential sources of salinity

Hypotheses

- 1.Groundwater surface water interactions between aquifer and Brazos River
- 2.Irrigation and evapotranspiration
- 3.Brine contamination from historic oil and gas fields

Hypotheses

- 1.Groundwater surface water interactions between aquifer and Brazos River
- 2.Irrigation and evapotranspiration
- 3.Brine contamination from historic oil and gas fields

Hypotheses

- 1.Groundwater surface water interactions between aquifer and Brazos River
- 2.Irrigation and evapotranspiration
- 3.Brine contamination from historic oil and gas fields

Hydrogeologic Setting

- Primarily used for irrigation
- Heterogeneous but typically exhibits fining upward sequence
- Recharged by precipitation and discharges at Brazos River
- Elevated salinity levels documented as early as 1967 by Cronin and Wilson

Methods

- 1. Analysis of historical BRAA and Brazos River chemistry data
- 2.BRAA and Brazos River water sampling: Specific conductance, temperature, major cations and anions, and ratios of hydrogen and oxygen isotopes
- 3. Coring and in-situ water sampling at three sites
- 4.Installation of data loggers to monitor changes in water level over time

TDS of the Brazos River Alluvium Aquifer

- 32 total samples
- High degree of variability in salinity
- TDS can double over the course of a few hundred yards
- Brine contamination from oil fields not likely cause of high TDS in Falls County

Land Cover

- 2011 USGS land cover map
- Falls County has a significantly higher proportion of land used for cultivated crops than McLennan County
- McLennan County has a much higher population than Falls County
- Cultivated crops can be either irrigated or nonirrigated
- Historically, Falls County has significantly more irrigation than McLennan County

Land Cover

- 2011 USGS land cover map
- Falls County has a significantly higher proportion of land used for cultivated crops than McLennan County
- McLennan County has a much higher population than Falls County
- Cultivated crops can be either irrigated or nonirrigated
- Historically, Falls County has significantly more irrigation than McLennan County

Piper Diagram

- Brazos River: Sodium chloride type water
- BRAA McLennan County: Calcium bicarbonate type water
- BRAA Falls County: Mixed bicarbonate to mixed cation and anion type water
- Aquifer and river tend to have distinct chemistries

Coring and In-situ Water Sampling

- Three sites: Non-irrigated pasture, irrigated orchard, and irrigated row-crop farm
- Core and in-situ water samples collected next to 3-4 wells at each site
- In-situ water samples collected using 1.5-foot screened interval
- Composite well sample also collected

Coring and In-situ Water Sampling

- In-situ water sampling showed some stratification present in aquifer
- However, specific conductance was found to both increase and decrease with depth, and is some cases was constant depending on the location

Groundwater /
Surface Water
Interactions
between BRAA
and Brazos River

- To create 10.78 foot rise in water level (assuming a porosity of 25%) would need 32.34 inches of recharge
- Area only received 15.24 inches of precipitation
- River stage rose 20.75 feet

- To create 10.78 foot rise in water level (assuming a porosity of 25%) would need 32.34 inches of recharge
- Area only received 15.24 inches of precipitation
- River stage rose 20.75 feet

- To create 10.78 foot rise in water level (assuming a porosity of 25%) would need 32.34 inches of recharge
- Area only received 15.24 inches of precipitation
- River stage rose 20.75 feet

Discussion and Conclusions

- Aquifer shows significant variability in salinity
- Aquifer specific conductance in Falls County is almost double that of McLennan County
- Little change in aquifer specific conductance due to seasonality or since 1960's
- In-situ sampling showed some salinity stratification, but stratification is not consistent
- River is not likely source of aquifer salinity
 - Aquifer and river tend to have different ionic chemistries
 - Aquifer and river are isotopically distinct
 - During 37-day gradient reversal, river water only traveled ~88 feet into aquifer
- Historic oil and gas fields do not appear to be salinity source
- In-situ sampling showed that irrigation could potentially impact aquifer salinity

Acknowledgements

- Wayne Hamilton, Jacob Jarvis, Wynne Casteel, William Brewer, and Stephanie Wong
- Scooter Radcliffe at the Southern Trinity Groundwater Conservation District
- The Brazos River Authority, Texas Water Resource Institute, and the Southern Trinity Groundwater Conservation District
- All land owners who participated in this study

References

- Baker, R.C., Hughes, L.S., and Yost, I.D., 1964, Natural Sources of Salinity in the Brazos River, Texas: With Particular Reference to the Croton and Salt Croton Creek Basins, United States Geological Survey Water-Supply Paper 1669-CC.
- Bene, James E., and Harden, Robert, 2004, Northern Trinity/ Woodbine Aquifer Groundwater Availability Model: R.W. Harden & Associates, Inc., p. 1-391.
- Cronin, James G. and Clyde A. Wilson. 1967. Ground Water in the Flood-Plain Alluvium of the Brazos River, Whitney Dam to Vicinity of Richmond, Texas. Texas Water Development BoaReport 41: 1-78.
- George, Peter G., Mace, Robert E., and Petrossian, Rima, 2011, Aquifers of Texas: Texas Water Development Board Report 380, p. 1-172.
- Goff, Karin, Lewis Michael E., Person, Mark A., and Leonard F. Konikow. 1998. Simulated Effects of Irrigation on Salinity in the Arkansas River Valley in Colorado. Ground Water 36.1: 76-86.
- Harlan, Scott K., 1990, Hydrogeologic Assessment of the Brazos River Alluvial Aquifer Waco to Marlin, Texas: Baylor University, unpublished Master thesis, p. 1-124.
- Jarvis, Jacob, 2010, Compartmentalization in the Northern Segment of the Brazos River Alluvium Aquifer: Baylor University, unpublished Master thesis, p. 1-114.
- National Oceanic and Atmospheric Administration., National Centers for Environmental Information, Climate Data Online Search, Station US1TXMCLO35 4/17/18-11/5/18, Accessed November 28, 2018.
- Pinkus, Joel R., 1987, Hydrogeologic Assessment of Three Solid Waste Disposal Sites in the Brazos River Alluvial Deposits: Baylor University, unpublished Master thesis, p. 1-156.
- Texas Commission of Environmental Quality. Clean Rivers Program CRP Data Tool. Brazos River Basin, Accessed January, 2018.
- Texas Water Development Board. Texas Water Development Board Groundwater Database Well Water Quality Report (Sample Year: All, Aquifer: Brazos River Alluvium Aquifer, County: All Available Selected, Water Quality Parameter: Total Dissolved Solids), Accessed November 22, 2017.
- United States Geological Survey, 2018, National Land Cover Database 2011, United States Geological Survey Land Cover Institute
- United States Environmental Protection Agency, 2018, Drinking Water Standards and Health Advisories Tables, Office of Water United States Environmental Protection Agency, p. 1-12.
- United States Geological Survey, Current Water Data for Texas, USGS 08096500 Brazos River at Waco, TX, 4/17/18-11/5/18. Accessed November 28, 2018.
- Whittemore, Donald O., 2013, Geochemical Differentiation of Oil and Gas Brine from Other Saltwater Sources Contaminating Water Resources: Case Studies from Kansas and Oklahoma: Environmental Geosciences 2.1, p. 15-31.
- Winslow, A.G., and I.R. Kister, 1956. Saline-Water Resources of Texas, Geological Survey Water-Supply Paper 1365: 44.

