Lake Granbury Bacterial Source Tracking

George D. Di Giovanni, PhD
Professor, Environmental Microbiology
Department of Plant Pathology and Microbiology
Texas AgriLife Research Center at El Paso
Texas A&M University System

Acknowledgments

El Paso AgriLife Research Staff
Dr. Elizabeth Casarez
Joy Truesdale
Nicholas Garcia
Elizabeth Espinoza
Elizabeth Sifuentes

Collaborators
Tim Osting and Kendra Riebschleager, Espey Consulting

Funding
Brazos River Authority
Texas Commission on Environmental Quality (TCEQ)
Environmental Protection Agency
Texas AgriLife Research
Presentation Outline

- Overview of *E. coli* bacterial source tracking (BST)
- *E. coli* BST results
- Overview of *Bacteroidales* BST
- *Bacteroidales* BST results
- Identification of likely sources of pollution
- Discussion

Solving Water Quality Problems

Clean Water Act: Restore and maintain beneficial uses of water bodies

Texas Water Quality Criteria

E. coli - indicator of fecal pollution and health risk

- Long-term geo. mean ≤ 126 CFU/100 ml

274 waterbodies in Texas listed as bacterially impaired on 2008 303(d) list
Fecal Pollution - What to Track?

- **Chemicals**
 - Caffeine, Brightening Agents, Fecal Sterols

- **Viruses**
 - Human, Animal, Bacterial

- **Parasites**
 - Cryptosporidium

- **Bacteria**
 - Bacteroidales
 - *E. coli*
 - Enterococcus

There Are *E. coli* in the Water, But Where Did They Come From?

- Develop and Implement Best Management Practices (BMPs)
- Bacterial Source Tracking (BST) as a tool

Track fecal pollution sources using *E. coli*
- Different animal guts → Different adaptations → Different *E. coli* strains → Genetic Differences → Phenotypic Differences
There Are *E. coli* in the Water, But Where Did They Come From?

- BST - laboratory tests to determine if *E. coli* (or other fecal bacteria) in water samples came from animal or human feces

- Most BST methods are Library Dependent
 - Need database of reference bacteria from known animal and human sources

- “Local” watershed libraries currently considered most useful
 - Cost and time considerations

Approach

Isolation of *E. coli* From Source and Water Samples

- *E. coli* isolation from samples using same media for compliance water monitoring
 - USEPA Method 1603 – modified mTEC medium
 - Confirmation of β-D-glucuronidase activity of isolates using NA-MUG
 - No broth enrichment or clinical media - avoid selecting different populations of *E. coli*
Isolation of \textit{E. coli} From Feces and Water

- **Fecal Specimens**
- **Modified mTEC Medium**
- **Water Sample Filtered and Filter Placed on Modified mTEC Medium (EPA Method 1603)**
- **E. coli Colonies**

Each \textit{E. coli} colony is an "isolate"

Purification and Confirmation of \textit{E. coli}
Archival (Freezing) of *E. coli* Isolates

- Isolates stored frozen at -80 °C (-112 °F)
- Remain alive for years
- Living library of isolates can be shared with other researchers

BST Technique 1
ERIC-PCR Fingerprinting

- Enterobacterial repetitive intergenic consensus sequence polymerase chain reaction (ERIC-PCR)
- Method of generating a DNA Fingerprint for each *E. coli* isolate
- Different strains of *E. coli* have different fingerprints
BST Technique 2

HindIII Automated RiboPrinting

- Another DNA Fingerprinting Test
- Also Confirms Isolates as *E. coli*

Data Analysis

Best Match Approach

- DNA fingerprints – Pearson correlation curve-based analyses
- “Best Match” approach with minimum similarity cutoff based on laboratory QC data
 - Water isolate must match library isolate ≥ minimum similarity or unidentified
 - Identification to *single library isolate* with highest similarity – max similarity approach
Data Analysis
Best Match Approach

Best ERIC-PCR Match (96.9% Similarity) of Water Isolate to Known Source (Pig) Isolate in Library

Best RiboPrint Match (95.8% Similarity) of Water Isolate to Known Source (Pig) Isolate in Library

No Match (Unidentified) Water Isolate, Best ERIC-PCR Match of only 82.4% Sim Library Isolate

No Match (Unidentified) Water Isolate, Best RiboPrint Match of only 65.9% Sim to Library Isolate
Minimum similarity for match
≥ 80% identical

68% ID rate for 1,592 water isolates from 1,375 samples
E. coli BST Accuracy

Combined Texas Restricted Cross-Validated Library and Lake Granbury Local Library

Rates of Correct Classification (RCCs)

<table>
<thead>
<tr>
<th>Source Class</th>
<th>Lake Granbury Local Library</th>
<th>Combined Texas Restricted Cross-Validated Library and Lake Granbury Local Library</th>
<th>% Random RCC</th>
<th>% RCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td># fecal samples</td>
<td># isolates</td>
<td># fecal samples</td>
<td># isolates</td>
</tr>
<tr>
<td>Sewage/Septage</td>
<td>17</td>
<td>21</td>
<td>96</td>
<td>101</td>
</tr>
<tr>
<td>Pets</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Livestock (includes cattle + other non-avian)</td>
<td>5 (1+4)</td>
<td>6 (1+5)</td>
<td>37 (24+13)</td>
<td>39 (25+14)</td>
</tr>
<tr>
<td>Avian (includes wild and domestic)</td>
<td>6</td>
<td>11</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>Wildlife (non-avian)</td>
<td>29</td>
<td>39</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>80</td>
<td>207</td>
<td>230</td>
</tr>
</tbody>
</table>

Library size

- **RCV** - 150 isolates that representing over 2,000 individual fecal samples and approx. 6,000 *E. coli* isolates

- 80 isolates from Lake Granbury fecal
 - Few pet and domestic sewage/septage
 - Fecal samples collected not necessarily most representative of potential pollution sources
 - Could affect identification of those sources

Identification rate for water isolates

- 43% of water isolates unidentified
- May only be reduced by including more Lake Granbury fecal isolates in library
E. coli Source Identifications

11861 Lake Granbury at 377

- **E. coli long-term geo. mean = 5 MPN/100 ml**

![Bar chart showing sources of E. coli](image)

E. coli Source Identifications

18015 Sky Harbor

- **E. coli long-term geo. mean = 102 MPN/100 ml**

![Bar chart showing sources of E. coli](image)
E. coli Source Identifications

18018 Waters Edge

- **E. coli long-term geo. mean = 19 MPN/100 ml**

E. coli Source Identifications

20215 Indian Harbor

- **E. coli long-term geo. mean = 108 MPN/100 ml**
E. coli Source Identifications
18038 Port Ridgea East

![Graph showing % of water isolates](image)

- Sewage/Septage: n = 48
- Pets: n = 7
- Livestock: n = 3
- Avian: n = 3
- Wildlife: n = 4
- Unidentified: n = 16

E. coli long-term geo. mean = 120 MPN/100 ml

Library Independent Screening of Pollution Sources Using Bacteroidales PCR

What are Bacteroidales?

- Human and animal fecal bacteria similar to *E. coli*
- Order Bacteroidales (or class Bacteroidetes) include several different genera and species of bacteria, including *Bacteroides* and *Prevotella* spp.
- Obligate anaerobes – difficult to grow and less likely to multiply in the environment
- More abundant in feces than *E. coli*

Many different Bacteroidales spp./strains shared between different animals and humans

Markers (PCR primers) developed to subgroups of Bacteroidales that appear host specific
Library Independent Screening of Pollution Sources Using *Bacteroidales* PCR

- Markers available for
 - Ruminants (cattle, deer, goats, sheep, llamas, horses, elk and some non-ruminant wildlife such as some feral hogs)
 - Humans
 - Hogs (including feral hogs)
 - Horses (needs optimization and validation)
 - Birds - under commercial development and needs validation

- No specific markers for wildlife
- Rapid and less expensive than library methods
- Qualitative or semi-quantitative detection
- Relationship to *E. coli* and pathogens uncertain

Sample Processing for *Bacteroidales* PCR

- 100 ml water sample collected, same as for *E. coli*
- Sample filtered to concentrate *Bacteroidales* bacteria
- DNA extraction and purification
- DNA tested for the presence of group-specific *Bacteroidales* – i.e. “markers”
 - standard PCR (presence/absence)
 - qPCR (semi-quantitative)
Bacteroidales PCR

Human Marker

Ruminant Marker

Bacteroidales PCR

Feral Hog Fecal Marker

Di Giovanni and Casarez, 2007, unpublished
Bacteroidales PCR Specificity

<table>
<thead>
<tr>
<th>Source of individual focal samples</th>
<th>No. of samples</th>
<th>No. of samples with indicated result* with the following primers:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Bac32/</td>
<td>Human HF183/F Bac708R</td>
<td>Human HF183/F Bac708R</td>
</tr>
<tr>
<td>Human</td>
<td>44</td>
<td>34 +, 5 +/−, 1 +/−</td>
<td>41 +, 2 +/−, 1 +/−</td>
</tr>
<tr>
<td>Pig</td>
<td>55</td>
<td>55 +, 4 +/−, 1 +/−</td>
<td>32 +, 4 +/−, 1 +/−</td>
</tr>
<tr>
<td>Cow</td>
<td>32</td>
<td>28 +, 4 +/−, 1 +/−</td>
<td>32 +, 4 +/−, 1 +/−</td>
</tr>
<tr>
<td>Sheep</td>
<td>12</td>
<td>12 +, 1 +/−, 1 +/−</td>
<td>8 +, 2 +/−, 2 +/−</td>
</tr>
<tr>
<td>Chicken</td>
<td>10</td>
<td>4 +, 3 +/−, 6 +/−</td>
<td>7 +, 7 +/−, 7 +/−</td>
</tr>
<tr>
<td>Wild bird</td>
<td>45</td>
<td>7 +, 7 +/−, 7 +/−</td>
<td>7 +, 7 +/−, 7 +/−</td>
</tr>
</tbody>
</table>

* +, positive signal; −, negative signal; +/−, weak positive result or both positive and negative results were obtained in three replicate analyses.

Bacteroidales PCR Specificity

Vogel et al., J Environ Qual (2007)

- 15 Septic, 100 cattle, 6 horse, 62 wildlife (mostly raccoons and opossums) samples
- General (Bac32/708) marker: >90% in human, cattle, horse; only 32% in wildlife
- Ruminant (CF128/Bac708): >90% in cattle and horse; <3% in human and wildlife
- Human (HF183/BAC708): 40% in human; 1% cattle, 0% horse, 0% wildlife
Presence/absence Detection of Bacteroidales Markers

<table>
<thead>
<tr>
<th>Site</th>
<th>Name</th>
<th># samples</th>
<th>Universal %</th>
<th>Hog %</th>
<th>Human %</th>
<th>Ruminant %</th>
</tr>
</thead>
<tbody>
<tr>
<td>11061</td>
<td>Main Lake</td>
<td>6</td>
<td>100</td>
<td>33</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>18015</td>
<td>Sky Harbor</td>
<td>6</td>
<td>100</td>
<td>67</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>18016</td>
<td>Sky Harbor Field Duplicate</td>
<td>6</td>
<td>100</td>
<td>67</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>19016</td>
<td>Waters Edge</td>
<td>6</td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>20215</td>
<td>Indian Harbor</td>
<td>6</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>18038</td>
<td>Port Ridgelea E</td>
<td>6</td>
<td>100</td>
<td>67</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Ruminant marker detects deer, cattle, llamas, goats and some other non-ruminant wildlife, including feral hogs.

Bacteroidales PCR Specificity

Lake Granbury Fecal Samples

- Some sewage samples weakly positive for hog marker
- Several wildlife samples positive for human marker
 - Deer atypical
 - Coyotes and rabbits not tested often in other studies!
Bacteroidales qPCR

![Graph showing qPCR data]

Bacteroidales qPCR Considerations

- Can use qPCR for evaluating relative abundance of marker *in individual samples*
 - General *Bacteroidales* marker baseline
 - Relative abundance of other markers
 - May provide more detailed information than presence/absence data—especially for individual sampling location

- However, although markers can be *detected* quantitatively, quantitative estimates of fecal loading may not follow
 - Differences in fecal abundance, environmental persistence and PCR sensitivity for different *Bacteroidales* markers
Bacteroidales qPCR Analytical Precision

* Analytical precision
 - *Bacteroidales* human marker occurrence in duplicate analysis of each water sample DNA extract for Sky Harbor duplicates (18015 and 18015FD, 12 individual samples)
 - Average threshold cycle (C\text{\textsubscript{T}}) of samples = 36.96
 - Average standard deviation of replicate C\text{\textsubscript{T}} values = 1.5
 - Average Relative Standard Deviation of replicates = 4.3% (range 0.2 to 10.3%)
 - Results in an average error of approximately 2-fold difference in marker quantitation

Therefore, when comparing one sample to another the difference must be greater than 2-fold to be significant. Results can sometimes vary between replicate samples. *Looking for trends.*

Bacteroidales qPCR

Human Marker Occurrence by Station and Sample Batch

![Graph showing human marker abundance by station and sample batch](image)
BST Identification of Likely Pollution Sources

- 11861 Lake Granbury at 377 – wildlife (deer, feral hogs); sewage/septage; livestock
- 18015 Sky Harbor – wildlife (deer, feral hogs); sewage/septage
- 18018 Waters Edge – NPS; wildlife (feral hogs)
- 20215 Indian Harbor – wildlife (deer, feral hogs); livestock
- 18038 Port Ridglea East – wildlife (deer, hogs); livestock; conflicting results for sewage/septage

Discussion

- Sewage/septage E. coli and/or Bacteroidales markers found at all sites, but does not appear to be leading pollution source
- Feral hogs identified as a significant source
- Unexpected feral hog source at Waters Edge
 - Two “hot” samples – impact from main lake water?
 - Additional samples could resolve issue
 - Low E. coli geo. mean of 19 MPN/100 ml
For Further Information

George D. Di Giovanni, Ph.D.
Texas AgriLife Research Center
at El Paso
Phone: 915-859-9111
E-mail: gdigiovanni@ag.tamu.edu
http://elpaso.tamu.edu/Research/Index.htm